En Australie occidentale, Shark Bay (ou « la baie aux requins ») n’est pas uniquement célèbre pour sa population de Dugongs et ses herbiers marins, les plus riches et les plus grands au monde. Elle abrite également d’étranges structures rocheuses vieilles de plus de 3,4 milliards d’années qui pourraient bien être nos lointains ancêtres : les stromatolithes. Que sont ces structures vivantes primitives ? En quoi nous renseignent-ils sur l’histoire de l’évolution de la vie sur Terre ?
Les stromatolithes : de mystérieux champs de roches
Shark Bay, un patrimoine mondial
Avec ses 2,2 hectares, Shark Bay est classée au patrimoine mondial de l’Unesco depuis 1991. Cette inscription résulte non seulement de l’incroyable biodiversité de la baie mais également de la présence d’un champ de roches assez étranges. En effet, ce site fait partie des très rares endroits au monde où il est possible d’observer des stromatolithes en développement actif. Ces derniers demeurent aujourd’hui les plus célèbres du monde avec ceux situés aux Bahamas.
Des dômes rocheux atypiques
Les stromatolithes sont d’étranges dômes rocheux comparables à des chapeaux de champignons que l’on peut observer un peu partout à la surface du globe, tout particulièrement en Australie, en Amérique du Nord ou encore en Europe. Ces structures se forment en milieux aquatiques peu profonds et généralement marins. Bien qu’ils prennent la forme d’une structure rocheuse, les stromatolithes sont composés d’organismes vivants qui grandissent et s’épanouissent en présence d’eau. Leur croissance est cependant très lente avec seulement 0,4 millimètres par an pour ceux de Shark Bay par exemple.
Des roches vivantes ?
Les stromatolithes : une origine bactérienne
Bien que les stromatolithes ne puissent pas être caractérisés de vivant, ils résultent de l’activité d’organismes bien vivants : des cyanobactéries (ou « algues bleues »). Ces organismes procaryotes (micro-organismes unicellulaires) sont des bactéries capables de réaliser une photosynthèse oxygénique. Ce processus énergétique vise à produire de la matière organique nourricière grâce à la lumière. Les cyanobactéries convertissent l’énergie lumineuse captée en énergie chimique tout en relâchant du dioxygène (O2) dans l’environnement.
Mais pourquoi cette forme ?
Les stromatolithes possèdent une structure laminaire (en lames superposées) qui forment des aspérités à leur surface. A l’origine, un tapis bactérien se développe sur un substrat. Puis, une couche de calcaire et de sédiments se forme et se dépose au-dessus de cette couche de bactéries. Ce premier étage de cyanobactéries meurt tandis qu’un autre se développe à la surface et ainsi de suite. Le dôme ainsi formé, évolue et grandit au fil des années.
Une apparition inattendue
Il y a 3,4 milliards d’années, la Terre était différente de celle que nous connaissons aujourd’hui. Outre les différences de positions des océans et des continents, l’atmosphère avait une composition différente. Il n’y avait pas de dioxygène (O2) dans l’atmosphère mais beaucoup de dioxyde de carbone (CO2). Cette atmosphère primitive est dite réductrice. Les organismes vivants de l’époque, principalement bactériens, vivaient alors sans oxygène, ni dans l’air, ni dans l’eau.
L’activité des stromatolithes a totalement bouleversé le monde du vivant à l’époque Précambrienne, entre 4,5 milliards et 542 millions d’années.
Le dioxygène étant toxique pour une majeure partie des organismes de l’époque, une véritable crise écologique a eu lieu, entrainant la toute première « extinction de masse » sur Terre. Les organismes qui ont survécu se sont adaptés en se servant du dioxygène nouvellement disponible dans l’atmosphère, pour alimenter leur machine métabolique.
La Grande Oxydation : un tournant majeur dans l’histoire du vivant sur Terre
La libération du dioxygène dans l’océan, puis dans l’atmosphère, a considérablement changé le visage de la planète. Ce phénomène de relargage de l’oxygène est connu sous le nom de « Grande Oxydation ». Elle a eu lieu entre -1,8 et -2,4 milliards d’années et a eu de nombreuses conséquences, notamment sur l’érosion des sols, la chimie des océans, le climat et bien évidemment l’évolution du vivant sur Terre.
Les plus anciens stromatolithes sont datés de -3,4 à -3,5 milliards d’années, la date étant encore discutée par les scientifiques. Mais à ce jour, ils sont considérés comme la plus ancienne forme de vie sur Terre. Ils représenteraient nos ancêtres les plus lointains. L’hypothèse la plus communément admise par la communauté scientifique est la suivante : en captant le dioxyde de carbone (CO2) présent en grande quantité dans l’atmosphère terrestre, l’activité photosynthétique des stromatolithes a permis une accumulation de l’oxygène dans l’océan.
A cette époque, dans l’océan, des ions ferreux (Fe2+), très solubles dans l’eau de mer, ont été apportés par l’action de l’érosion des roches continentales, mais aussi par un apport des sources hydrothermales sous-marines. Au contact de l’oxygène nouvellement libéré par les cyanobactéries, ces ions ferreux se sont oxydés sous forme de fer ferrique (Fe3+) de couleur rouge et ont précipité au fond des océans. Une fois l’essentiel du fer oxydé dans les océans, l’oxygène s’est accumulé ensuite dans l’atmosphère terrestre à partir de 2,5 milliards d’années.
Cette « Grande Oxydation » a laissé des traces dans des roches sédimentaires anciennes très riches en fer, connues sous le nom de formations de fer rubanées (ou BIF en anglais, pour « Banded Iron Formations »). Ces couches alternent avec des strates rouges-orangées continentales pauvres en oxydes de fer. L’ensemble de la séquence sédimentaire s’est déposé en milieu marin entre -3,5 à -1,8 milliards d’années.
Les stromatolithes ont donc joué un rôle essentiel dans l’évolution de la vie sur Terre permettant le développement de la vie aérobie (besoin d’oxygène). Cette dernière a elle-même permis le développement d’organismes pluricellulaires plus complexes et terrestres tel que l’être humain.
Merci pour cet article ! On peut observer des stromatolithes en Limagne (Auvergne). Très impressionant comme structures.
Merci pour ce retour et cette information !
Tres instructif et passionnant !! J’ai trouvé en Champeix (Limagne ?) des petites roches altérées en pelure d’oignon et ferreuse : un petit aimant y reste « accroché » mais serait-ce des stromatolithes, de l’altération de roches basaltiques ou…? je ne suis pas érudit, simplement émerveillé !! Merci à vous en tous cas!